Sintering and dielectric properties of Al₂O₃ ceramics doped by TiO₂ and CuO

Qi-Long Zhang · Hui Yang · Jia-Li Zou · Hui-ping Sun

Received: 28 May 2005 / Accepted: 25 July 2006 / Published online: 23 February 2007 © Springer Science + Business Media, LLC 2007

Abstract The effects of CuO and TiO₂ additives on the microstructure and microwave dielectric properties of Al₂O₃ ceramics were investigated. Al₂O₃ ceramics with CuO and TiO₂ additions can be well sintered to achieve 93~98% theoretical densities below 1,360 °C due to Ti₄Cu₂O liquid phase sintering effect. The *Qf* values decreased with increasing CuO and TiO₂ content, due to the formation of the second phase Ti₄Cu₂O. However, the varying behaviors of the dielectric constant (ε_r) and temperature coefficients (τ_f) were associated with phase constitutions, as a result of the change of CuO and TiO₂content. The τ_f can be shifted close to 0 ppm/°C by controlling the content of CuO and TiO₂ sintered at 1,360 °C for 4 h showed ε_r of 11.8, *Qf* value of 30,000 GHz, and τ_f of -7 ppm/°C.

Keywords Liquid-phase sintering · Dielectric properties · Alumina · Microwave ceramics

1 Introduction

In recent years, mobile communication system has prevailed in a worldwide range and the techniques of internet have been developed fast. These developments have caused the information capacity of mobile communication increasing exponentially. The competitions for communication wave band have been more and more furious. Mobile communication should be developed to a higher frequency in order to utilize frequency resource sufficiently and widen

Q.-L. Zhang · H. Yang (⊠) · J.-L. Zou · H.-p. Sun Department of Materials and Engineering, Zhejiang University, Hangzhou 310027, China e-mail: mse237@zju.edu.cn the wave width. The wave band of 5.8 GHz has been opened. For that the microwave components based on microwave dielectric ceramics have to fulfill higher requirements. Therefore, microwave dielectric ceramics used in high frequency has become a research focus.

Several compounds such as Ba(Mg_{1/3}Ta_{2/3})O₃, Ba(Zn_{1/3} Ta_{2/3})O₃, (Mg,Ca)TiO₃ have been developed for the microwave applications [1–4]. Al₂O₃ ceramics exhibits good microwave dielectric properties of low dielectric constant (ε_r ~10) and good quality factor (*Qf*~50,000 GHz). However, Al₂O₃ ceramics requires a very high sintering temperature (1600 °C) and have a very large temperature coefficients of resonant frequency (τ_f =-60 ppm/°C) [5]. For practical applications, it is necessary to reduce the sintering temperature and temperature coefficients of resonant frequency of Al₂O₃ ceramics.

In order to shift the τ_f value of Al₂O₃ ceramics, TiO₂ with positive τ_f value (τ_f =+450 ppm/°C) [6] was introduced to form Al₂O₃-TiO₂ ceramics. Tzou et al. reported that Al₂O₃-TiO₂ ceramics containing MgO-CaO-SiO₂-Al₂O₃ glass addition could be sintered at 1,250~1,350 °C and achieved $\tau_f \sim 0$ ppm/°C by adjusting the sintering temperature and TiO₂ content. However, the *Qf* value of Al₂O₃ ceramics decreased to 9,578 GHz because of the formation of Al₂TiO₅ phase and glass phase [7]. Ohishi et al found that the Al₂TiO₅ phase disappeared by annealing treatment and a near-zero τ_f with excellent microwave dielectric properties was obtained in 0.9 Al₂O₃-0.1 TiO₂ ceramics sintered 1,350 °C for 2 h [8].

In this study, CuO and TiO₂ multiple additives were added into Al₂O₃ ceramics to lower the sintering temperature and to improve the Qf and τ_f values. The influences of CuO and TiO₂ additions on the microstructures and the microwave dielectric properties of Al₂O₃ ceramics were discussed.

Fig. 1 X-ray diffraction patterns of Al_2O_3 ceramics with a 1.0 wt.% CuO-3.0 wt.% TiO₂, b 1.0 wt.% CuO-7.0 wt.% TiO₂, c 1.0 wt.% CuO-10 wt.% TiO₂, d 0.5 wt.% CuO-7 wt.% TiO₂, and e 1.5 wt.% CuO-7 wt.% TiO₂ sintered at 1,320 °C for 4 h

2 Experimental procedures

Samples of $Al_2O_3+xCuO+yTiO_2$ ($x = 0.5 \sim 1.5$ wt.%, $y = 3 \sim 10$ wt.%) were synthesized by conventional solidstate reaction methods using high-purity α -Al₂O₃, CuO and TiO₂(\geq 99%). The starting materials were mixed according to the desired stoichiometry, and then ground in distilled water for 24 h in a balling mill with zircon balls. The mixtures were dried, forced through a 300 mesh sieve, and pressed into pellets 11 mm in diameter and 5 mm thickness by uniaxial pressing at 1,000 kg/cm². The pellets were sintered at temperatures of 1,240~1,400 °C for 4 h in air atmosphere.

The crystalline phases of the sintered ceramics were identified from X-ray diffraction patterns. The microstructure of sintered compacts was taken from polished and fractured surfaces by scanning electron microscopy (SEM). For differential thermal analysis (DTA) experiments, the samples were fired at a heating rate of 5 °C/min in flowing air. The bulk densities of the pellets were measured by the Archimedes method. Microwave dielectric constants ε_r and the quality values Qf at microwave frequencies (9~9.5 GHz) were measured by Hakki-Coleman dielectric resonator method [9] using an Agilent 8719ET(50 MHz~ 13.5 GHz) network analyzer. Temperature coefficient of resonant frequency (τ_f) (ppm/°C) was also measured by the same method with changing temperature mainly from 25 to 80 °C and calculated from the equation:

$$\tau_f = (f_{80} - f_{25})/(f_{25} \times 55) \times 10^6$$

where f_{80} and f_{25} represent the resonant frequency at 80 and 25 °C, respectively.

In our experiment, the test data of the apparent densities, dielectric properties shown in Figures is the average value of three samples. The error of the apparent densities, dielectric constants $\varepsilon_{\rm r}$, the quality values *Qf*, and temperature coefficient of resonant frequency τ_f among three samples is about 2, 1, 5, and 5%, respectively.

3 Results and discussion

Figure 1 shows the X-ray diffraction patterns of Al₂O₃ ceramics doped with CuO and TiO2 sintered at 1,320 °C for 4 h. The XRD diffraction patterns showed the α -Al₂O₃ phases existed as the main crystalline phases associated with TiO₂ as minor phases. A small amount of the second phase Ti₄Cu₂O was detected. The intensity of TiO₂ phase peaks is enhanced with the increase of TiO_2 content. The intensity of TiO₂ phase peaks is weakened and the intensity of Ti₄Cu₂O phase peaks is enhanced with the increase of CuO content. In the study of the Al₂O₃-TiO₂ ceramics doped with MgO-CaO-SiO₂-Al₂O₃ glass, Tzou et al found that Al_2TiO_5 phase which caused a bigger decrease in *Of* was formed as the second phase [7]. However, in our studies, it is interesting to note that the Al₂TiO₅ phase is not observed for all of the prepared samples. It indicates that CuO addition prevent the formation of Al₂TiO₅ phase.

The average apparent densities of Al_2O_3 ceramics doped with CuO and TiO₂ as a function of sintering temperatures are illustrated in Fig. 2. The sintering temperature of the pure Al_2O_3 ceramics is higher than 1600 °C. In contrast to that, the Al_2O_3 samples with CuO–TiO₂ have attained 93~98% theoretical density (The theoretical densities of Al_2O_3 , TiO₂, and Ti₄Cu₂O are 3.99, 4.25 and 3.78 g/cm³, respectively, estimated from the XRD patterns) below 1360 °C. For the specimen with 0.5 wt% CuO-7 wt.% TiO₂, 1 wt.% CuO-3 wt.% TiO₂, and 1 wt.% CuO-10 wt.% TiO₂, Al_2O_3 ceramics densities increased drastically with

Fig. 2 The average apparent densities of Al_2O_3 ceramics doped with CuO and TiO₂ vs. sintering temperature

Fig. 3 The SEM micrograph of Al₂O₃ Ceramics with **a** 0.5 wt.% CuO-7 wt.% TiO₂, **b** 1.0 wt.% CuO-7 wt.% TiO₂, **c** 1.5 wt.% CuO-7 wt.% TiO₂, **d** 1.0 wt.% CuO-10 wt.% TiO₂ sintered at 1,320 °C, and with **e** 0.5 wt.% CuO-7 wt.% TiO₂, **f** 1.0 wt.% CuO-7 wt.% TiO₂ sintered at 1,360 °C

increasing sintering temperature and then saturated. However, for the specimen with 1 wt.% CuO-7 wt.% TiO₂, and 1.5 wt.% CuO-7 wt.% TiO₂, the densities initially increased with increasing sintering temperature and then decreased. The density decrease of samples sintered at 1,360 °C might be caused by overfiring. And the overfiring could result in abnormal grain growth, as clearly shown in Fig. 3f, which hinders the densification of Al_2O_3 ceramics. The maximum density at a certain temperature increased with increasing TiO₂ content and with decreasing CuO content due to the increase of TiO₂ (confirmed by phase analyses in Fig. 1.) which showed higher than Al_2O_3 and Ti₄Cu₂O.

The SEM photographs of Al₂O₃ ceramics with different amount of additives are illustrated in Fig. 3. Most of the samples have equiaxed crystal grains. At 1,320 °C, the section of Al₂O₃ ceramics with 0.5 wt.% CuO and 7 wt.% TiO₂ were porous. However the uniform grain growth and a reduction in porosity were observed for Al₂O₃ ceramics with 1.0 wt.%, 1.5 wt.% CuO and 7 wt.% TiO₂. The effect of CuO and TiO₂ was demonstrated not only the decrease of the sintering temperature, but also the improved grain growth of ceramics. When sintering temperature increased to 1,360 °C, the sample with 1.0 wt.% CuO and 7 wt.% TiO₂ gave exaggerated grain growth with inhomogeneous microstructure. The minimum grain size was 2 um and the maximum was 15 um, and the proportion of the large grain increased. The sample with 0.5 wt.% CuO and 7 wt.% TiO₂ was dense, and the grain size increased.

Figure 4. shows the differential thermal analysis (DTA) curves of pure Al_2O_3 and Al_2O_3 doped with 0.5 wt.% CuO-7 wt.% TiO₂. The endothermic or euthermic peak is not observed for the pure Al_2O_3 sample. However, the DTA cure of Al_2O_3 doped with 0.5 wt.% CuO-7 wt.% TiO₂ shows an endothermic peak at 1,121.6 °C, which is the melting temperature of the phase Ti₄Cu₂O as shown in Fig. 1. Thus, when the Al_2O_3 ceramics doped with CuO and TiO₂ were sintered, the low melting phase Ti₄Cu₂O

Fig. 4 DTA curves of pure $\rm Al_2O_3$ and $\rm Al_2O_3$ doped with 0.5 wt.% CuO-7 wt.% TiO_2

Fig. 5 The average dielectric constants of Al_2O_3 ceramics with CuO and TiO₂ vs. sintering temperature

formed due to the reaction between with CuO phase and TiO_2 phase at a certain temperature (confirmed by the analyses in Fig. 1. and reference [10]). The decrease of Al_2O_3 ceramic sintering temperature was caused by the liquid-phase effect of Ti_4Cu_2O which was melted about 1,126 °C.

The average dielectric constant of Al₂O₃ ceramics with CuO and TiO₂ as functions of their sintering temperatures is shown in Fig. 5. The relationship between ε_r values and sintering temperatures reveals basically the same trend with those between bulk densities and sintering temperatures, because higher density means lower porosity (ε_r =1). The ε_r values of Al₂O₃ ceramics with constant amount of TiO₂ decreased with increasing CuO content, which might be attributed to the gradual increase of Ti₄Cu₂O and reduction of TiO₂ with higher ε_r value (~100) [6] illustrated in Fig. 1. For the specimens with the same CuO content, the ε_r values increased with increasing TiO₂ content. However, the average dielectric constant varying with the Variation of density illustrated in Fig. 2. It was observed that Al₂O₃

Fig. 6 The average Qf values of Al₂O₃ ceramics with CuO and TiO₂ vs. sintering temperature

ceramics with 0.5 wt.% CuO and 7 wt.% TiO₂ sintered at 1,280 °C showed lower density than ones with 1.0 wt.% CuO and 3 wt.% TiO₂, but higher ε_r values than ones with 1.0 wt.% CuO and 3 wt.% TiO₂. The dielectric constant is dependent on the density and phase constituents. In general, higher density results in a higher dielectric constant owing to lower porosity (ε_r =1). It indicates that TiO₂ with higher ε_r value play a chief role in the ε_r variety of Al₂O₃ ceramics.

Figure 6 illustrates the average Qf values of Al₂O₃ ceramics with CuO and TiO₂ as a function of their sintering temperatures. For the specimen with 0.5 wt.% CuO-7 wt.% TiO₂, 1 wt.% CuO-3 wt.% TiO₂, and 1 wt.% CuO-10 wt.% TiO₂, The Qf values of Al₂O₃ ceramics increased drastically with increasing sintering temperature and then reached a saturation value. However, for the specimen with 1 wt.% CuO-7 wt.% TiO₂, and 1.5 wt.% CuO-7 wt.% TiO₂, the Qf values initially increased with increasing sintering temperature decreased with increasing CuO and TiO₂ content. The microwave dielectric loss was mainly caused not only by

Fig. 7 The average temperature coefficients of resonant frequency (τ_f) of Al₂O₃ ceramics of **a** with 7 wt.% TiO₂, and **b** with 1 wt% CuO sintered at 1,360 °C

the lattice vibration modes, but also by the pores and the second phase [11]. It was reported by Kim et al [12] that a second phase was a more important factor than porosity to reduce the Qf values of microwave dielectric ceramics having over 90% of relative density. Thus the increase of CuO and TiO₂ decreased the maximum Qf values of Al₂O₃ ceramics due to the increase of the second phase Ti₄Cu₂O with a very low Qf value, and the decrease in Qf values with the increasing temperature might be attributed to abnormal grain growth, as clearly shown in Fig. 3f [13].

Figure 7 shows the average temperature coefficient of resonant frequency (τ_f) of Al₂O₃ ceramics with CuO and TiO₂ sintered at 1,360 °C. These results suggest that the τ_f values change to negative values with the increase of CuO content and to positive values with the increase of TiO₂ content. The τ_f values of Al₂O₃ and TiO₂ are -60 and 450 ppm/°C, respectively [5, 6]. According to the XRD patterns, as shown in Fig. 1, the intensity of TiO₂ phase is enhanced with the increase of TiO₂ additive, the intensity of TiO₂ phase is weakened and the intensity of Ti₄Cu₂O is enhanced with the increase of CuO additive. The apparent change of τ_f values mentioned above when the content of CuO and TiO₂ changed could be thought as the effect of the crystalline phase. From these results, we can determine that the modification of τ_f was associated with CuO and TiO₂ content. The Al₂O₃ ceramics with 0.5 wt.% CuO and 7 wt.% TiO₂ sintered at 1,360 °C had τ_f of -7 ppm/°C.

4 Conclusion

The microwave dielectric properties and the microstructure of Al_2O_3 ceramics with CuO and TiO₂ additive were investigated. Al_2O_3 ceramics with CuO and TiO₂ can be well sintered to achieve 93~98% theoretical density below 1360°C due to Ti₄Cu₂O liquid phase sintering effect. The microwave dielectric properties of Al₂O₃ ceramics are found to correlate with sintering temperature and the amount of sintering aid. The *Qf* values decreased with increasing CuO and TiO₂ content, due to the formation of second phase Ti₄Cu₂O. However, the behaviors of ε_r and τ_f were associated with phase constitutions, as a result of the change of CuO and TiO₂ content. In this study, the τ_f can be shifted close to 0 ppm/°C by controlling the CuO and TiO₂ content. As sintered at 1,360 °C, Al₂O₃ ceramics with 0.5 wt.% CuO and 7 wt.% TiO₂ additives exhibited good microwave dielectric properties: ε_r =11.8, *Qf*=30,000 GHz, τ_f =-7 ppm/°C.

Acknowledgements This work was supported by Chinese High Tech Program under grant no.2003AA302760.

References

- C.C. Chou, D.S. Tsai, I.N. Lin, J. Steeds, Mater. Chem. Phys. 79, 218 (2003)
- 2. X. Hu, X.M. Chen, Y.J. Wu, Mater. Lett. 54, 279 (2002)
- 3. C.L. Huang, C.L. Pan, J.F. Hsu, Mater. Res. Bull. 37, 2483 (2002)
- J. Venkatesh, V. Sivasubramanian, V. Subramanian, V.R.K. Murthya, Mater. Res. Bull. 35, 1325 (2000)
- J. Breeze, S.J. Penn, M. Pool, N.M. Alford, Electron. Lett. 36, 883 (2000)
- 6. S.B. Cohn, IEEE Trans. Microwave Theor. Tech. 16, 218 (1968)
- 7. C.F. Yang, Y.C. Chen, W.C. Tzou, S.L. Chang, Mater. Lett. 57, 2945 (2003)
- Y. Ohishi, Y. Miyauchi, H. Ohsato, K. Kakimoto, Jpn. J. Appl. Phys. 43, 749 (2004)
- 9. B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theor. Tech. 8, 402 (1960)
- 10. C.L. Huang, M.H. Weng, Mater. Res. Bull. 35, 1881(2000)
- 11. D.M. Iddles, A.J. Bell, A.J. Moulson, J. Mater. Sci. 27, 6303 (1992)
- W.S. Kim, T.H. Kim, E.S. Kim, K.H. Yoon, Jpn. J. Appl. Phys. 37, 5367 (1998)
- 13. C.L. Huang, C.L. Pan, S.J. Shium, Mater. Chem. Phys. 78, 111 (2003)